Markov Random Fields based Estimation of Distribution Algorithm and Application of Sharable Resource Constrained Scheduling Problem

نویسندگان

  • X. Hao
  • J. Tian
  • H. W. Lin
  • T. Murata
چکیده

During the past several years, a large number of studies have been conducted in the area of sharable resource constrained scheduling problems. Intelligent manufacturing planning and scheduling based on meta-heuristic methods, such as the simulated annealing and particle swarm optimization, have become common tools for finding satisfactory solutions within reasonable computational times in real settings. However, only a few studies have analyzed the effects of interdependent relations during group decision-making activities. This paper proposes a Markov network based estimation of distribution algorithm (MNEDA) to overcome these challenges. We present an empirical validation of MNEDA on the semiconductor final test scheduling problem as an example of resource constraint scheduling problems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Splittable stochastic project scheduling with constrained renewable resource

This paper discusses the problem of allocation of constrained renewable resource to splittable activities of a single project. If the activities of stochastic projects can be split, these projects may be completed in shorter time when the available resource is constrained. It is assumed that the resource amount required to accom-plish each activity is a discrete quantity and deterministic. The ...

متن کامل

An Efficient Genetic Agorithm for Solving the Multi-Mode Resource-Constrained Project Scheduling Problem Based on Random Key Representation

In this paper, a new genetic algorithm (GA) is presented for solving the multi-mode resource-constrained project scheduling problem (MRCPSP) with minimization of project makespan as the objective subject to resource and precedence constraints. A random key and the related mode list (ML) representation scheme are used as encoding schemes and the multi-mode serial schedule generation scheme (MSSG...

متن کامل

A Genetic Algorithm and a Model for the Resource Constrained Project Scheduling Problem with Multiple Crushable Modes

Abstract: This paper presents an exact model and a genetic algorithm for the multi-mode resource constrained project scheduling problem with generalized precedence relations in which the duration of an activity is determined by the mode selection and the duration reduction (crashing) applied within the selected mode. All resources considered are renewable. The objective is to determine a mode, ...

متن کامل

A Multi-Mode Resource-Constrained Optimization of Time-Cost Trade-off Problems in Project Scheduling Using a Genetic Algorithm

In this paper, we present a genetic algorithm (GA) for optimization of a multi-mode resource constrained time cost trade off (MRCTCT) problem. The proposed GA, each activity has several operational modes and each mode identifies a possible executive time and cost of the activity. Beyond earlier studies on time-cost trade-off problem, in MRCTCT problem, resource requirements of each execution mo...

متن کامل

An Energy-efficient Mathematical Model for the Resource-constrained Project Scheduling Problem: An Evolutionary Algorithm

In this paper, we propose an energy-efficient mathematical model for the resource-constrained project scheduling problem to optimize makespan and consumption of energy, simultaneously. In the proposed model, resources are speed-scaling machines. The problem is NP-hard in the strong sense. Therefore, a multi-objective fruit fly optimization algorithm (MOFOA) is developed. The MOFOA uses the VIKO...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013